A Novel Eg5 Inhibitor (LY2523355) Causes Mitotic Arrest and Apoptosis in Cancer Cells and Shows Potent Antitumor Activity in Xenograft Tumor Models.

نویسندگان

  • Xiang S Ye
  • Li Fan
  • Robert D Van Horn
  • Ryuichiro Nakai
  • Yoshihisa Ohta
  • Shiro Akinaga
  • Chikara Murakata
  • Yoshinori Yamashita
  • Tinggui Yin
  • Kelly M Credille
  • Gregory P Donoho
  • Farhana F Merzoug
  • Heng Li
  • Amit Aggarwal
  • Kerry Blanchard
  • Eric H Westin
چکیده

Intervention of cancer cell mitosis by antitubulin drugs is among the most effective cancer chemotherapies. However, antitubulin drugs have dose-limiting side effects due to important functions of microtubules in resting normal cells and are often rendered ineffective by rapid emergence of resistance. Antimitotic agents with different mechanisms of action and improved safety profiles are needed as new treatment options. Mitosis-specific kinesin Eg5 represents an attractive anticancer target for discovering such new antimitotic agents, because Eg5 is essential only in mitotic progression and has no roles in resting, nondividing cells. Here, we show that a novel selective Eg5 inhibitor, LY2523355, has broad target-mediated anticancer activity in vitro and in vivo. LY2523355 arrests cancer cells at mitosis and causes rapid cell death that requires sustained spindle-assembly checkpoint (SAC) activation with a required threshold concentration. In vivo efficacy of LY2523355 is highly dose/schedule-dependent, achieving complete remission in a number of xenograft tumor models, including patient-derived xenograft (PDX) tumor models. We further establish that histone-H3 phosphorylation of tumor and proliferating skin cells is a promising pharmacodynamic biomarker for in vivo anticancer activity of LY2523355.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eg5 inhibitor YL001 induces mitotic arrest and inhibits tumor proliferation

Eg5 is a kinesin spindle protein that controls chromosomal segregation in mitosis and is thus a critical drug target for cancer therapy. We report the discovery of a potent, selective inhibitor of Eg5 designated YL001. YL001 was obtained through shape similarity based virtual screening, and it bears a 1,5-disubstituted tetrazole scaffold. YL001 exhibits favorable bioactivity in a variety of can...

متن کامل

K858, a novel inhibitor of mitotic kinesin Eg5 and antitumor agent, induces cell death in cancer cells.

The aim of this study was to investigate the mechanism of inhibition of Eg5 (kinesin spindle protein), a mitotic kinesin that plays an essential role in establishing mitotic spindle bipolarity, by the novel small molecule inhibitor K858. K858 was selected in a phenotype-based forward chemical genetics screen as an antimitotic agent, and subsequently characterized as an inhibitor of Eg5. K858 bl...

متن کامل

GSK1070916, a potent Aurora B/C kinase inhibitor with broad antitumor activity in tissue culture cells and human tumor xenograft models.

The protein kinases, Aurora A, B, and C have critical roles in the regulation of mitosis and are frequently overexpressed or amplified in human tumors. GSK1070916, is a novel ATP competitive inhibitor that is highly potent and selective for Aurora B/C kinases. Human tumor cells treated with GSK1070916 show dose-dependent inhibition of phosphorylation on serine 10 of Histone H3, a substrate spec...

متن کامل

A potent chemotherapeutic strategy in prostate cancer: S-(methoxytrityl)-L-cysteine, a novel Eg5 inhibitor.

Docetaxel-based combination chemotherapy remains the predominant treatment for castration-resistant prostate cancer. However, taxane-related drug resistance and neurotoxicity have prompted us to develop substitute treatment strategies. Eg5 (kinesin spindle protein), which is crucial for bipolar spindle formation and duplicated chromosome separation during the early phase of mitosis, has emerged...

متن کامل

A Novel Time-Dependent CENP-E Inhibitor with Potent Antitumor Activity

Centromere-associated protein E (CENP-E) regulates both chromosome congression and the spindle assembly checkpoint (SAC) during mitosis. The loss of CENP-E function causes chromosome misalignment, leading to SAC activation and apoptosis during prolonged mitotic arrest. Here, we describe the biological and antiproliferative activities of a novel small-molecule inhibitor of CENP-E, Compound-A (Cm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 14 11  شماره 

صفحات  -

تاریخ انتشار 2015